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Small Loop Antenna and Duality Theorem

Having studied the ideal electric dipole we now turn our attention to an interesting antenna closely
related to the electric dipole: the electric loop antenna. Such an antenna is shown in Figure 1.
The antenna consists of a loop of thin wire wound into a circle of radius a in the xy-plane. A
current I flows along the wire around the loop in the φ̂-direction. Also shown in the figure is an
equivalent magnetic dipole at the origin, which can be ignored for now. It will be discussed later.

Figure 1: Small loop antenna (source: C. A. Balanis, Antenna Theory, Analysis, and Design, 2nd
ed., John Wiley and Sons)

The vector magnetic potential in Cartesian coordinates, for a wire conductor (1D) is

A(x, y, z) =
µ0

4π

ˆ
C

I(x′, y′, z′)
e−jkR

R
dl′. (1)

We make the following assumptions:

1. The radius of the loop a is small compared to the wavelength, a� λ;

2. The current along loop flows only in the cirumferential direction, that is, I only has a φ̂
component;

3. The current along the loop can be treated as uniform.

Collectively, these imply that the current on the conducting loop is

I = Iφφ̂
′
, 0 ≤ φ′ ≤ 2π. (2)
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Then, in cylindrical coordinates,

I(ρ′, φ′, z′)dl′ = Iφadφ
′φ̂
′

(3)

We can now evaluate A in cylindrical coordinates. Since there is only a φ-component of the
current, we only expect a φ-component of A. A is then given by

A(ρ, φ, z) = φ̂
µ0

4π

ˆ 2π

0

Iφadφ
′φ̂
′
· φ̂e

−jkR

R

= φ̂
µ0aIφ

4π

ˆ 2π

0

cos(φ− φ′)e
−jkR

R
dφ′ (4)

where it is important to note that the unit vectors φ̂
′

and φ̂ do not point in the same direction
because we are in a cylindrical coordinate system, and hence their dot product gives the cos()
function seen here.

The length R can be found as

R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2. (5)

In spherical coordinates, we can express these quanties as follows,

x = r sin θ cosφ (6)

y = r sin θ sinφ (7)

z = r cos θ (8)

x′ = a cosφ′ (9)

y′ = a sinφ′ (10)

z′ = 0. (11)

Then,

R =
√
r2 − 2r sin θ cosφa cosφ′ − 2r sin θ sinφ a sinφ′ + a2

=
√
r2 + a2 − 2ar sin θ cos(φ− φ′). (12)

The expression for Aφ becomes

Aφ =
µ0aIφ

4π

ˆ 2π

0

cos(φ− φ′)
exp[−jk

√
r2 + a2 − 2ar sin θ cos(φ− φ′)]√

r2 + a2 − 2ar sin θ cos(φ− φ′)
dφ′ (13)

Since the problem has axial symmetry, Aφ does not depend on φ; therefore, we evaluate it at an
arbitrary observation angle. Let’s take φ = 0 for simplicity,

Aφ =
µ0aIφ

4π

ˆ 2π

0

cos(φ′)
exp[−jk

√
r2 + a2 − 2ar sin θ cos(φ′)]√

r2 + a2 − 2ar sin θ cos(φ′)
dφ′ (14)
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Integration of this expresssion is challenging. We approximate the integrand by expanding the
exp(x)/x term in a Taylor series about x = 0, i.e.,

f(x) = f(0) + f ′(0)x+
1

2!
f ′′(0)x2 + · · ·+ 1

(n− 1)!
f (n−1)(0)xn−1 + · · · (15)

where in this case

f(a) =
exp[−jk

√
r2 + a2 − 2ar sin θ cos(φ′)]√

r2 + a2 − 2ar sin θ cos(φ′)
(16)

which is valid if the loop is small (a→ 0). Then, keeping only the first two terms of the series,

f(a) ≈ f(0) + f ′(0)a. (17)

Here,

f(a = 0) =
e−jkr

r
, (18)

and the second term is a bit more involved. Let us let

u =
√
r2 + a2 − 2ar sin θ cos(φ′), (19)

where we see that u(0) = r and

f(u) =
e−jku

u
. (20)

Then, by the chain rule,

f ′(a) =
df

du

du

da
. (21)

These derivatives are
df

du
= −jke

−jku

u
− e−jku

u2
, (22)

and
du

da
=

1

2

(
r2 + a2 − 2ar sin θ cosφ′

)1/2 · (2a− 2r sin θ cosφ′). (23)

Then,

f ′(a)|a=0 =
df

du

du

da

∣∣∣∣
a=0

=

(
−jke−jkr

r
− e−jkr

r2

)
(− sin θ cosφ′) (24)

Returning to our series approximation for f(a),

f(a) ≈ e−jkr

r
+

(
jke−jkr

r
+
e−jkr

r2

)
(sin θ cosφ′)a

≈ e−jkr
[

1

r
+ a

(
jk

r
+

1

r2

)
sin θ cosφ′

]
(25)

Substituting this result into (14),

Aφ ≈
µ0aIφ

4π

[ˆ 2π

0

e−jkr

r
cosφ′dφ′ + a

(
jk

r
+

1

r2

)
sin θ

e−jkr

r

ˆ 2π

0

cos2 φ′dφ′
]
. (26)
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The first integral is zero, while the second one integrates to π, so

Aφ ≈
µ0a

2Iφ
4

e−jkr
(
jk

r
+

1

r2

)
sin θ. (27)

Next, we find the magnetic field from

H =
1

µ0

∇×A =
1

µ0

[
r̂

r sin θ

∂

∂θ
(Aφ sin θ)− θ̂

r

∂

∂r
(rAφ)

]
(28)

which gives

Hr =
jka2Iφ

2

(
1

r
− j

kr2

)
cos θ

e−jkr

r
(29)

and

Hθ = −(ka)2Iφ
4

(
1 +

1

jkr
− 1

(kr)2

)
e−jkr

r
sin θ. (30)

Finally, the electric field is found as

E =
1

jωε
∇×H =

η(ka)2Iφ
4

(
1 +

1

jkr

)
e−jkr

r
sin θφ̂ (31)

Let us compare these fields to those produced by an ideal dipole,

H =
I∆z

4π
jk

(
1 +

1

jkr

)
e−jkr

r
sin θ φ̂. (32)

E =
I∆z

2π
η

(
1

r
− j

kr2

)
e−jkr

r
cos θ r̂ +

I∆zjωµ

4π

(
1 +

1

jkr
− 1

(kr)2

)
e−jkr

r
sin θ θ̂. (33)

Notice the extreme similarity between the loop magnetic field (29), (30) and the dipole electric
field (33)! The same is also true of the loop electric field (31) and the dipole magnetic field (32).
In fact, if we take the dipole fields created from an ideal dipole with current strength Im and
length `, and make the following substitutions,

E ⇔ H (34)

H ⇔ −E (35)

ε ⇔ µ (36)

µ ⇔ ε (37)

η ⇔ 1

η
(38)

1

η
⇔ η (39)
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then the following fields result,

E =
−jkIm`

4πr

(
1 +

1

jkr

)
e−jkr

r
sin θφ̂ (40)

Hr =
Im`

η2π

(
1

r
− j

kr2

)
cos θ

e−jkr

r
(41)

and

Hθ =
jkIm`

η4π

(
1 +

1

jkr
− 1

(kr)2

)
e−jkr

r
sin θ. (42)

If we set
Im` = jηkπa2Iφ = jωµSIφ, (43)

where S = πa2 is the area of the loop, then these fields are exactly equal to the loop fields (29),
(30), and (31)!

This is not a coincidence. The relations (34) - (39) form what is known as the Duality Theory
and it is a very useful theorem associated with Maxwell’s equations. Consider the source-free curl
equations, which are

∇× E = −jωµH (44)

∇×H = jωεE (45)

Notice the symmetry in this equations, similar to what we observed when comparing the E and H
fields of the loop and dipole. Using the Duality Theorem, we can actually synthesize the second
curl equation from the first, without even needing to know the second equation. Or vice versa.

Now introduce sources to the equations. Ampere’s Law becomes

∇×H = jωεE + J (46)

If we apply the Duality Theory to this equation, the dual would be

∇× E = −jωµH +M (47)

where M is the dual of the electric current source in the first equation,

J ⇔M . (48)

Such a source is called a magnetic current source. While magnetic current sources do not exist
in nature, they can be useful mathematical tools because introducing M in Faraday’s Law makes
it a perfect dual of Ampere’s Law.

How does this apply to the loop antenna we have derived? We see that by applying duality to
the electric dipole problem, we can arrive at the fields of a loop antenna. Equivalently, this is the
same as finding the fields from a so-called magnetic dipole whose current is Im and length is `,
as we did above in (40)-(42). This is a lot simpler than the long procedure proposed initially to
determine the fields from the loop directly from the electric current. Knowing the relationship
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between the magnetic dipole strength Im and the loop antenna parameters given by (43), the
fields can be related to the geometry of the loop.

We can observe that the loop antenna / magnetic dipole antenna creates the same fields as an
electric dipole but with the roles of the E and H fields reversed. So this time, is is E that has a
φ̂-oriented componented, instead of H . Similarly, this time H has both r̂- and θ̂-components,
instead of E. Essentially, the polarization of the antenna is orthogonal to that of an electric
dipole. Hence the co-location of an electric and magnetic dipole can be used to create two
orthogonally-polarized fields, which can be useful for creating CP or EP waves, for example.
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