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Introduction to Arrays

The antennas we have studied so far have very low directivity / gain. While this is good for
broadcast applications (where we want uniform coverage), there are cases where we want a more
“focused” antenna pattern to prevent wasting power illuminating areas/direction where we do
not need coverage. For example, if we are trying to send a signal to a terminal on the horizon
(θ = 90◦), a dipole is quite wasteful because even ±45◦ from the horizon we are still broadcasting
half the radiation intensity (the HPBW points for an ideal dipole.)

Although we could design more directive antenna elements, one straightforward way to increase
the directivity of a single antenna is to assemble it with other antennas to form an antenna array.
Then, using interference between the fields created by the individual array elements, it is possible
to synthesize a variety of directive beam patterns.

1 Two-Element Antenna Arrays

Let’s consider a simple case of two ideal dipoles spaced a distance S apart along the z-axis. Since
the elements themselves are oriented along the z-axis, we call this a collinear array.

This analysis looks very similar to that which we carried out for the λ/2 dipole. Recall that we
divided the dipole into many sections of ideal dipoles and used superposition (the summation of all
the elements’ responses) to determine the resulting electric and magnetic fields. Here we will use
the same approach – except that we only have to worry about the contribution of two segments.

Recall the θ-component of the electric field radiated in the far field by a Hertzian dipole is

Eθ =
jkηI∆z

4π︸ ︷︷ ︸
Es

sin θ
e−jkR

R
. (1)

Let’s call the first fraction Es since it was previously defined as the strength factor of the dipole
and did not depend on the geometry of the situation. The total Eθ-field produced by the two
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dipoles, by superposition, is

ET = Es sin θ1
e−jkR1

R1

+ Es sin θ2
e−jkR2

R2

. (2)

In the far field, very far from the array, we can make the following approximations:

θ1 = θ2 = θ; (3)

1

R1

=
1

R2

=
1

r
. (4)

Recall that we cannot simply say that R1 = R2 = r from the phase term (the complex exponential
term) because even if R1 ≈ R2 ≈ r,

exp(−jkR1) 6= exp(−jkR2) 6= exp(−jkr). (5)

But, making the parallel ray approximation, we can say

R1 ≈ r − S

2
cos θ (6)

R2 ≈ r +
S

2
cos θ. (7)

Therefore,

ET =
Es
r

sin θ
[
e−jk(r−

s
2
cos θ) + e−jk(r+

s
2
cos θ)

]
(8)

= Es
e−jkr

r
sin θ

[
ej

kS
2

cos θ + e−j
kS
2

cos θ
]

(9)

= 2Es
e−jkr

r
sin θ cos

(
k
S

2
cos θ

)
(10)
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The Es
e−jkr

r
sin θ term is exactly the pattern of a single dipole, if placed at the origin (the centre

of the array.) So what has happened is that the original field of the dipole has been doubled
(which we expect, because we have two dipoles driven with the same amplitude as the single
dipole previously), and multiplication by a factor

2 cos

(
k
S

2
cos θ

)
, (11)

which we call the array pattern or more commonly the array factor. The original element pattern
is modified by multiplying by this new factor. The array factor results purely from summing the
phase terms corresponding to the different distances involved in the array. Here, for this specific
example,

AF = ej
kS
2

cos θ + e−j
kS
2

cos θ. (12)

Notice that the array factor is only a function of wavelength (k), element spacing (S) and obser-
vation angle (θ.) We also notice that it represents the response of the array if the elements used
had been purely isotropic; that is, if

E ∝ e−jkr

r
(13)

(a factor which is found using the far-field E and H of the dipole and dropping angular depen-
dence.) Notice that the AF has no dependence on the sin θ pattern factor associated with the
constituent elements: the AF term is separable from the total field expression. The total pattern
is the multiplication of the array factor and the field produced by the constituent element. This
property is called pattern multiplication. Notice also that for the degenerate case of a one-element
array, regardless of the element type,

AF = 1. (14)

Example: 2-element dipole array with an element spacing of half a wavelength (S = λ/2).

AF = 2 cos(k
S

2
cos θ) = 2 cos(

2π

λ
· λ

4
cos θ) (15)

= 2 cos
(π

2
cos θ

)
(16)

The total pattern is the pattern factor multiplied by the array factor. Graphically, this is achieved
as follows [1]:

We see that the resulting pattern is slightly more directive than that of the individual elements
composing the array.

In general, all sorts of beam possibilities can be achieved by changing the wavelength, element
spacing, and as we will soon see, the number of elements as well as the amplitude and phase of the
element excitations. Here we have only considered two elements driven with currents of identical
amplitude and phase. However, the analysis technique is identical: the principle of superposition
is always used.
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2 Interpretation of Array Factor for the Two-Element
Case

We have developed a formula for array factor for the two-element case. It is instructive to see
physically was is happening for a few examples. Remember, the AF represents the pattern of an
array of isotropic elements.

Example: S = λ/2 (graphics from [1])

AF = 2 cos
(π

2
cos θ

)
(17)

Example: S = λ (graphics from [1])

The array factor is
AF = 2 cos (π cos θ) (18)

will have nulls wherever
cos(π cos θ) = 0. (19)

Nulls occur between the additive points in the pattern – that is, wherever the contributions from
both sources are 180◦ out of phase. Evaluating,

π cos θ = ±π
2
,±3π

2
(20)

θ = ±60◦,±120◦. (21)
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