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Continuous Arrays

1 One-dimensional Continuous Arrays

Consider the 2-element array we studied earlier where each element is driven by the same signal
(a uniform excited array), where the overall array length is D and the elements are separated by
d. Consider the case where an additional third element is added to the array mid-way between
the two elements, leading to the element distance being halved. Then another two in the spaces
midway between those three are added, and so on, as shown below. In the limit as the number of
points goes to infinity, the array becomes continuous, and so does the current distribution of the
array. Instead of an excitation at discrete points in space, the excitation becomes continuous, as
shown in Figure 1.
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Figure 1: Continuous array

The array factor for a discrete, linear spaced array is

AF =
N−1∑
m=0

Ime
jkz cos θ (1)

where previously we defined z = md. If the array is centred on the z-axis and we let the number
of points become infinite, and the array spacing d tends to zero, our summation is replaced with
an integral:

SF =

ˆ L

0

I(z)ejkz cos θdz =

ˆ L

0

I(z)ej2π
z
λ
cos θdz, (2)
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where I(z) = 1 over the interval 0 ≤ z ≤ L, and the array factor for the continuous array has
been called the space factor SF. Since I(z) = 0 outside this interval, we can replace the limits of
the integral as follows, without loss of generality:

SF =

ˆ ∞
−∞

I(z)ej2π
z
λ
cos θdz. (3)

We recognize this as the Fourier Transform of I(z/λ) between the spatial domain z/λ and angular
domain u = cos θ. We are used to thinking of Fourier Transforms in terms of time and frequency;
think of z/λ as the “spatial” frequency variable and u as the “time variable.” I(z/λ) defines a
pulse that is L/λ in extent, which if centred at the origin is expressed mathematically as

I(z/λ) = rect

(
z/λ

L

)
. (4)

We know the Fourier Transform of a pulse is a sinc function, therefore the space factor is

SF = sinc

(
L

λ
cos θ

)
. (5)

The array factor is plotted in Figure 1 for various array lengths. This kind of current distribution
is very useful because as you can see as the length of the distribution increases the directivity of
the antenna as a whole becomes extremely high.

Figure 2: Polar plots of SF for various array lengths; D in the legend denotes the array length L.
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The first nulls of the sinc(x) function are at x = ±11. Therefore, the first nulls in the beam
pattern occur at L

λ
cos θ∓ = ±1. Since the beam maximum as at θ = 90◦, and we are very close

to θ = 90◦ at the first nulls, cos θ∓ = sin(π/2− θ∓) ≈ π/2− θ∓. Therefore,

θ+ =
π

2
+
λ

L
(6)

θ− =
π

2
− λ

L
(7)

and

FNBW = θ+ − θ− =
2λ

L
(8)

You can show that the half power beamwidth is approximately half this value (λ/L).

You might think to yourself, “Well, our array has turned into a line source. So, why don’t we
just use a very long dipole to achieve the same thing as this ’continuous array”’? Well, you may
recall that with a dipole we are forced to maintain a sinusoid current distribution along the wire
in order to meet the boundary conditions at the end of the wire (namely, that the current must
be zero at the ends). Because of the sinusoidal current distribution on a wire, it is impossible
to generate the patterns shown for the continuous array; some examples for some dipoles having
the same lengths as shown previously are plotted in Figure 1. They have multiple grating lobes
shooting off in all sorts of directions yielding a very impractical pattern, that on average, has low
directivity. Hence, the uniform continuous array has superior properties.

It is not yet obvious how one would synthesize such a current distribution in real life, since we
have shown that wires obviously do not support these gate-like current distributions. Such a
distribution is support by projecting a smaller, gate-like current distribution onto a larger line. To
understand that situation, we need to first generalize to a two dimensional case.

2 Two-dimensional Continuous Arrays

We can construct a two-dimensional continuous array by taking a whole bunch of continuous
arrays and stacking them next to each other, an infinitesimal distance apart, to form an aperture.
Such an aperture is shown in Figure 2.

If the excitation of the aperture is uniform, then we still produce a broadside beam as before,
except it has width in both the principal directions of the array elements. In the x-direction, the
HPBW is λ/d1 and in the y-direction, the HPBW in λ/d2. Such a continuous array is capable
of synthesizing a 3-dimensional beam shape of very high directivity, and is called an aperture
antenna.

We can use the HPBW results to derive the directivity of the array. At a distance r from the
aperture, the approximate width of the main beam is rλ/d1 in the x-direction, and rλ/d2 in
the y-direction. Hence the area of the beam is approximately r2λ2/d1d2. Recall the maximum
directivity of an antenna is defined as the ratio of the power density radiated in the preferred
direction of the antenna to that produced by an isotropic radiator. Therefore, if each antenna

1Note sinc(x) = sin(πx)/(πx).
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Figure 3: Patterns from dipole antennas of various lengths; D in the legend denotes the dipole
length L.

Figure 4: Two-dimensional continuous array
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transmits a power Wt, then the power densities produced by the aperture antenna, and isotropic
radiator, respectively, are

Pap =
Wt

r2λ2/d1d2
(9)

assuming all power is transmitted through the beam area we defined previously (approximate),
and

Piso =
Wt

4πr2
(10)

(recalling that 4πr2 is the surface area of a sphere). The directivity is then

D =
Pap
Piso

=
4πd1d2
λ2

. (11)

Noting that the area of the aperture is Aap = d1d2,

D =
4πAap
λ2

. (12)

This is an interesting result since when we compare it to our earlier definition of directivity,

D =
4πAem
λ2

(13)

and we see the expressions are virtually identical, with the maximum effective area of the antenna
replaced with the physical area of the aperture. This is the real advantage of aperture antennas:
the gain of the antenna is ultimately only limited by the area of the aperture! In reality, the gain
of the antenna may be lower because it is related to directivity by multiplying by er, the radiation
efficiency of the antenna. Hence, the antenna has an effective area of Aeff = eaAap, where ea is
the so-called aperture efficiency of the antenna. You can use the fact the the directivity of the
antenna is related to its physical area to any aperture shape. For example, for circular apertures
of diameter L, Aeff = eaAap = eaπ(L/2)

2.

The beamwidths in each principal plane were defined as θ1 = λ/d1 and θ2 = λ/d2. Since the
beam area is approximately rθ1rθ2 = r2θ1θ2, the directivity expression can be written as

D =
sphere area

beam area
=

4πr2

r2θ1θ2
. (14)

Hence,
θ1θ2D = 4π (15)

can be used as a design equation in general for aperture antennas. In the case of a 2D aperture, we
synthesize a uniform excitation in space by using horn antennas (which have a rectangular/circular
opening at the end of the antenna). The equivalent current distribution is formed by the fields at
the opening in the antenna. The fields can be projected onto larger aperture such as reflectors,
allowing us to realize exceptionally high gains from such structures.

The results assume that the aperture field is uniform. In practise, though it is not possible to
get a perfectly uniform aperture, we can get close (realistic apertures always have an amplitude
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taper across them). Perhaps the most important is to realize constant phase across the aperture.
Practical apertures are realized by projecting the fields of small apertures (such as the fields in
a rectangular waveguide) into a larger physical area. This is accomplished through the use of
horn antennas, where the transition obviously serves the purpose of expanding the field to a larger
aperture. It can also be done by projecting the field onto a larger reflector, which is shaped
to maintain the uniformity of the phase while increasing the physical area of the antenna. The
“cantenna” we have looked at in class also achieves a similar effect. The resulting taper is partly
responsible for lowering the aperture efficiency ea of the antenna, defined as being unity when
the aperture is uniformly illuminated and no illumination extends past the aperture. Reflector
antennas will often have an amplitude taper of 10 dB across the span of the reflector, resulting
in an aperture efficiency of around 70%.

3 Specific Aperture Examples

We have seen that
θ1θ2D = 4π [sr] (16)

if θ1, θ2 are in radians, or equivalently

θ1θ2D = 41, 253 (17)

if θ1, θ2 are in degrees.

Square Aperture

If we use a square aperture, then
θ1 = θ2 ≡ θsq. (18)

Then,
θ2sqD = 4π (19)

and
θsq
√
D = 2

√
π [rad] or 203.2 [deg]. (20)

Circular Aperture

A circular aperture of diameter L has a half-power beamwidth of θcir. Then a distance r from
the aperture, the radius of the subtended beam is

a = r
θcir
2
. (21)

The area of the beam is therefore πa2. Then,

D =
4πr2

πa2
=

4r2

a2
=

4r2

r2 θ
2

4

=
16

θ2cir
(22)

describes the directivity of the aperture if you know the HPBW. Conversely, we can use the
formula

D =
4π

λ2
Aap =

4π

λ2
π(L/2)2 =

(
πL

λ

)2

≡ 16

θ2cir
. (23)
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Solving yields

θcir =
4λ

πL
(24)

which allows us to predict the HPBW knowing the diameter of the aperture.

4 Far Field from Aperture Antennas

Consider a circular aperture, such as an open-ended circular waveguide, which has a diameter D
as shown in Figure 4. Close in to the antenna, if the aperture is excited uniformly, it will appear
to produce a beam of cylindrical shape; however, we know as the distance from the antenna
increases, the fields diverge and a far distance from the antenna the beam shape looks conical,
whose half-power angle is given by θb = λ/D. There is a position rt where the beam transitions
between the near-field cylinder and the far-field cone, as shown in the diagram. Hence, the beam
appears to emanate from a point on the aperture known as the phase centre, because the phase
of a field quantity in the far field can be computed from the distance to this point.

Figure 5: Open-ended waveguide and field regions

By the geometry shown,

tan

(
θb
2

)
=
D/2

rt
. (25)

For very narrow beams (large apertures), tan(θb/2) ≈ θb/2. Using θb = λ/D, the transition point
is

rt =
D2

λ
. (26)

The generally accepted point of the start of the far field is twice the distance from the phase
centre to this point. Hence,

rff =
2D2

λ
(27)

which we note is identical to an earlier definition of far field derived for linear wire antennas.
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