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Diffraction

We know propagation mechanisms exist that allow us to receive signals even if there is no line-
of-sight path to the receiver. Reflections off of objects is one propagation mechanism. Another
significant propagation mechanism is diffraction, which allows radio signals to travel around around
obstructions. It can be explained by Huygen’s principle, which says that all points on a wavefront
can be considered as points for the production of secondary wavelets, which subsequently combined
to produce new waves in new directions. Hence, even if a region is shadowed by an obstruction,
diffraction around the object’s edges produces waves that propagate into the shadowed region.

1 Knife-Edge Diffraction

We will consider a simplified scenario, called knife-edge diffraction, which can be used to conserva-
tively estimate more realistic diffraction effects. The obstruction is considered to be a “knife-like”
edge protruding into the path between the transmitter and receiver. The geometry is shown in the
illustration in Figure 1. The “screen” is assumed to have infinite width (i.e., it extends infinitely
into and out of the page). No signals can penetrate the obstruction, therefore, some of the
rays emanating from the transmitter will not reach the receiver. However, in an imaginary plane
located in line with the obstruction, points above the obstruction can be considered secondary
sources of wavelets, which combine to form waves propagating toward the receiver to the right of
the screen.

Figure 1: Knife-edge diffraction scenario

We will consider the contribution from one of these such waves. Then, by superposition, we can
add up rays produced by all the sources above the obstruction and find the total field produced
at the receiver. It is assumed that the polarization of these waves is unchanged in the process.

We start with a geometric situation shown below. The screen has a height hobs, and the transmitter
and receiver are at heights ht and hr, respectively. We consider two propagation paths from the
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transmitter to the receiver: a line-of-sight path and a diffracted path. If we draw the line-of-
sight (LOS) path from the transmitter to the receiver, the transmitter is a distance d1 from the
obstruction and the receiver is a distance d2 from the obstruction, along this ray. The diffracted
path makes an angle β with the horizontal on the transmitter side and an angle γ with the
horizontal on the receiving side. As the transmitter and receiver are at different distances away
from the obstruction, these angles are not necessarily equal.

Figure 2: KED with ht = hr

In Figure 2, ht = hr. We can modify this geometry to account for different transmitter and
receiver heights, as shown in Figure 3.

Figure 3: KED with ht ̸= hr

For large d1, d2, we can use the previous geometry, which assumed ht = hr, to simplify the
analysis and it will remain approximately true for ht ̸= hr, provided the separation distance is
large compared to the heights. A simplified illustration is shown in Figure 4.
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Figure 4: Simplified diffraction geometry

We are interested in finding the received electric field from the diffracted path shown, relative to
the line of sight path. Its characteristics depend strongly on the path difference ∆ between the
length of the diffracted path and the length of the LOS path. Using the geometry shown ∆ is
easily found follows:
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where v is called the Fresnel-Kirchoff parameter, we can express ϕ as

ϕ =
π

2
v2 (11)
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where v is essentially the height of the screen multiplied by a frequency-dependent scalar. The
second form of v above can be used when only the angles and distances are known (usually when
the transmitter and receiver are at different heights).

We have computed path difference for one diffracted ray. The normalized electric field produced
at the receiver, relative to the LOS path, is
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where the difference in received electric field magnitude is assumed to be zero.

Now we include the effect of all the other rays produced by the Huygen’s sources. These are
produced for all Huygen’s sources above the screen, and hence we sum or integrate from v to
infinity:
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where a dummy variable t has been used in the integration so that the resulting expression is
a function of v. A constant has been included so that Ed/ELOS = 1 when v = −∞ (no
obstruction). F (v) is called the complex Fresnel integral. A complex Fresnel integral is generally
defined as:
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The Fresnel integrals C(v) and S(v) must be integrated numerically. We re-write the Fresnel
integrals in the expression for the electric field to match these definitions of the Fresnel integrals.
For example ˆ ∞
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At infinity, the Fresnel integrals have values
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allowing us to write the normalized electric field as
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Recall in Friis’ formula we defined a free space loss term such that
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Wt

=
GtGr
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(20)
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or equivalently
Wr

Wt

= GtGrgFS (21)

where gFS is the free space inverse loss (or “gain”). We now include the effects of diffraction by
defining
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so that
Wr

Wt

= GtGrgFSgdiff =
GtGr

lfs · ldiff
(23)

gdiff or ldiff must be evaluated numerically. There is a reasonably good approximation for
gdiff = |F (v)| in dB defined by Lee as follows.
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A plot of gdiff and the approximation is plotted below.
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Figure 5: Diffraction gain as a function of v

A steep drop in gdiff is observed as commencing at v = −1, which corresponds to ϕ = π
2
or

a quarter wavelength of path difference between the tip of the obstruction and the LOS path.
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The actual height of the obstruction depends on the geometry of the problem. However, if the
obstruction is very close to the receiver (d1 >> d2),

v = h

√
2(d1 + d2)

λd1d2
≈ h

√
2

λd2

Solving when v = −1 gives

h =

√
λd2
2

which is the critical obstacle height. If the height is below this value, minimal diffraction effects
will occur.

Example Given the geometry in Figure 6, determine a) the loss due to knife-edge diffraction and
b) the height of the obstacle required to induce 6 dB of diffraction loss. Assume f = 900 MHz.

TX

RX

Knife edge

50 m

25 m

100 m

Figure 6: Example problem geometry

a) The wavelength is λ = c/f = 1/3 m. The angles β, γ and subsequently α can be determined
as

β = tan−1

(
100− 50

10000

)
= 0.2865◦,

γ = tan−1

(
100− 25

2000

)
= 2.15◦,

α = β + γ = 2.434◦ = 0.0424 rad.

The Fresnel-Kirchoff coefficient is then found using (10) as v = 4.24. Invoking the Lee approxi-
mation (24) or referring to Figure 1, the diffrcation losses can be determined to be 25.5 dB.

b) For 6 dB of diffraction loss, v = 0. The obstruction height h can then be found using similar
trinagles (β = −γ) as

h

2000
=

25

12000
⇒ h = 4.16 m.

Hence the obstacle height is hobs = 25 m + 4.16 m = 29.16 m.
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2 Fresnel Zones

Consider the contribution from a single Huygen’s source in the diffraction problem. It is elevated
a distance h from the LOS ray. We notice that if the height h is chosen such that the path length
differential between the diffracted path and LOS path ∆ is one half-wavelength, the diffracted
wave has incurred a 180◦ phase shift relative to the LOS wave. This is true over a locus of points
forming a ring in the plane of the screen. Such a ring or circle is called a Fresnel zone. If we
increase h further, such that ∆ = λ, we get a ring of sources that produce fields in phase with the
LOS path at the receiver. This process repeats, giving us alternating Fresnel zones that provide
constructive and destructive interference to the total received signal every λ/2 increase in h. We
define the set of points at which propagation produces an excess path length of precisely nλ/2 to
be called the nth Fresnel zone.

Figure 7: Fresnel zone radius illustration

The radius of the nth Fresnel zone circle can be found as follows. Consider the triangle below
which shows a cross-section of the nth Fresnel zone. Path AB is the direct path and path ACB
is the indirect path. The condition that will locate point C on the nth Fresnel zone is

r1 + r2 = d1 + d2 + nλ/2. (25)

Hence, √
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and since Fn ≪ d1, Fn ≪ d2, we can approximate this as
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Each circle of radius Fn has an excess path length of λ/2, λ, 3λ/2, etc. for n = 1, 2, 3, . . .. Note
that rn depends on the distances d1 and d2 to the obstruction and that rn is maximum when
d1 = d2. The circles shrink as the obstruction is moved closer to the transmitter or receiver.
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Figure 8: Fresnel zones

If we join all the points between the transmitter and receiver for which ∆ is an integer multiple of
λ/2 (effectively drawing Fresnel zones in 3D), we obtain ellipsoids, as shown in Figure 8. Various
degrees of obstruction are illustrated in Figure 9.

The relevance of Fresnel zones and the knife-edge diffraction study can be seen by considering
a more realistic diffraction scenario, shown in Figure 10. Here, h actually denotes the clearance
height, unlike the definition of (10), so for these purposes we should think of h as negative. The
cases consider a spherical diffraction obstacle, which is obviously quite different than a knife-edge
obstacle. However, the diffraction from a spherical obstacle can be carried out numerically, and
can be used to simulate terrain blocking the path between the transmitter and receiver.

The results of such calculations are shown in the graphs in Figure 11, which are plotted as a
function of the obstacle height normalized with respect to the first Fresnel zone radius. Here,
curve A represents the diffraction from a perfectly conducting earth sphere, which is obviously
unrealistic but a canonical case that can be easily computed. Curve C represents the diffraction
curve from a lossy earth assuming realistic values for ground conductivity, and hence represents a
much more accurate situation. Curve B shows the result from a knife-edge diffraction calculation
like what we have carried out. Clearly, curves B and C are very similar, so knife-edge diffraction
actually does a reasonable job of predicting earth diffraction but with much less computational
effort.

The second thing we notice is that regardless of the calculation technique used, there is a special
point h/F1 = 0.6 where the diffraction gain/loss is equal to that if there was no obstacle present
(i.e. free space gain/loss). That is, the path is cleared by approximately 0.6 times the radius
of the first Fresnel zone at the location of the obstacle. This tells us that diffraction effects
can be effectively neglected provided that more than 60% of the first Fresnel zone radius is not
obstructed. This can be thought of the 3D equivalent of the λ/4 rule we discussed earlier.
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Figure 9: Cases of Fresnel zone blockage
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Figure 10: Realistic diffraction cases. If h is re-defined to be the clearance height, the top picture
show h > 0 and the bottom show h < 0. Note this is the opposite convention of (10).

Figure 11: Comparison of diffraction calculations for various cases
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3 Multiple Knife-Edge Diffraction

If the propagation path is obstructed by more than one obstruction, the total diffraction loss of all
the obstacles must be computed. This is obviously a challenging task that is realistically simplified
by using computers to ray-trace and compute the diffraction. But a very (overly) simple approach
can be obtained by replacing a series of obstacles with a single equivalent obstacle, as shown in
Figure 12. This approach usually gives an optimistic value of the received power, but is not a bad
approximation.

Figure 12: Multiple obstruction diffraction
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