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Brief Introduction to Orbital Mechanics

We wish to work out the specifics of the orbital geometry of satellites. We begin by employing
Newton’s laws of motion to determine the orbital period of a satellite.

The first equation of motion is
F = ma (1)

where m is mass, in kg, and a is acceleration, in m/s2.

The Earth produces a gravitational field equal to

g(r) = −GmE

r2
r̂ (2)

where mE = 5.972× 1024 kg is the mass of the Earth and G = 6.674× 10−11 N ·m2/kg2 is the
gravitational constant. The gravitational force acting on the satellite is then equal to

F in = −GmEmr̂

r2
= −GmEmr

r3
. (3)

This force is inward (towards the Earth), and as such is defined as a centripetal force acting
on the satellite. Since the product of mE and G is a constant, we can define µ = mEG =
3.986× 1014 N ·m2/kg which is known as Kepler’s constant. Then,

F in = −µmr
r3

. (4)

This force is illustrated in Figure 1(a). An equal and opposite force acts on the satellite called
the centrifugal force, also shown. This force keeps the satellite moving in a circular path with
linear speed, away from the axis of rotation. Hence we can define a centrifugal acceleration as
the change in velocity produced by the satellite moving in a circular path with respect to time,
which keeps the satellite moving in a circular path without falling into the centre.
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Figure 1: Illustration of motion of satellite in its orbit a distance r from a centre of mass O
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The satellite moves with constant angular velocity ω, which is defined by the angle θ covered by
the satellite in time t. But,

rθ = ` (5)

is the arc length traversed by the satellite, therefore,

ω =
`

rt
=
`

t

1

r
=
v

r
, (6)

where v is the linear velocity of the satellite. If we define an angular acceleration Ω, then

Ω =
dω

dt
=
d2θ

dt2
. (7)

If the points A and B shown in Figure 1(b) are very close, then from Figure 1(c),

AB

OA
=
l

r
=
vdt

r
≡ ∆v

v
≈ dv

v
. (8)

The last equality results from the triangle showing the velocity vectors in Figure 1. Rearranging,

dv

dt
=
v2

r
= Ω. (9)

The centrifugal force on the satellite is then

Fout = mΩ (10)

or

F out =
mv2r̂

r
=
mv2r

r2
. (11)

The net force on the satellite must be zero, so the sum of (4) and (11) must be zero,

µm

r2
=
mv2

r
⇒ v =

√
µr. (12)

A direct consequence of this equation is that the velocity of the satellite is inversely proportional
to its orbital altitude r; the lower the orbit of the satellite, the faster it travels. The time T it
takes the satellite to transit through one orbit is determined knowing the circumference of the
orbit,

T =
S

v
=

2πr√
µ/r

=
2πr3/2
√
µ

. (13)

We can see that the higher the orbital altitude r of a satellite, the longer its orbital period. In
fact, the orbit of a satellite is classified according to its altitude and corresponding orbital period,
as shown in Table 1.

Our assumption of a circular orbit is sufficient for calculating the orbital period, but in general
satellites do not move in circular orbits around the earth. We now wish to determine the shape
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Orbit Orbital altitude (km) Orbital period T

Low earth orbit (LEO) 160–2,000 87 – 127 min
Medium earth orbit (MEO) 2,000–35,786 127 min – 24 hr
Geostationary earth orbit (GEO) 35,786 23 hr 56 min 4.1 sec

Table 1: Orbit types

of the orbital path taken by a satellite. Let us say the position of the satellite is described by a
position vector r pointing from the centre of the earth to the satellite, as shown in Figure 2.

If the satellite is accelerated then the force on the satellite is described by

F = m
d2r

dt2
. (14)

However, there is also a centripetal force acting on the satellite given by (4). Therefore,

−µr
r3

=
d2r

dt2
, (15)

or
d2r

dt2
+
µr

r3
= 0. (16)

This is a second-order linear differential equation which we wish to solve for r. This is challenging
because both r and its unit vector r̂ are functions of time. That is,

r = r(t)r̂(t), (17)

where
r̂(t) = x̂ sin θ(t) cosφ(t) + ŷ sin θ(t) sinφ(t) + ẑ cos θ(t). (18)

We need to use the product rule to find the derivatives dr/dt and d2r/dt2. For example,

dr

dt
=
dr(t)

dt
r̂(t) +

d ˆr(t)

dt
r(t). (19)

It is better to express r in a coordinate system with a simpler dependence on time and angles. A
good choice is a rotated coordinate system where the orbital plane of the satellite coincides with
the xy plane. We will call this new plane the x0 − y0 plane, and the coordinate system is shown
in Figure 3.

We can convert these local coordinates to cylindrical form as

r0 = x0x̂0 + y0ŷ0 = r0r̂0 (20)

r̂0 = cosφ0x̂0 + sinφ0ŷ0 (21)

φ̂0 = − sinφ0x̂0 + cosφ0ŷ0 (22)

Equation (23) becomes
d2r0
dt2

+
µr0
r30

= 0. (23)
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Figure 2: Initial satellite coordinate system

(a) Rotated coordinate system
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Figure 3: Orbital plane coordinate system
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This equation has two components: a radial (r̂0) component and an axial (φ̂0) component.
Taking the derivative on the left hand side, the radial component of this equation is

d2r0
dt2
− r0

(
dφ0

dt

)2

= − µ
r20

(24)

while the axial component is

2
dr0
dt

dφ0

dt
+ r0

d2φ0

dt2
= 0. (25)

Let us begin by solving the second equation (25. Consider the quantity on the left hand side
below, which we apply the product rule to to yield

1

r0

d

dt

(
r2
dφ0

dt

)
=

1

r0

(
2r
dφ0

dt
+ r20

d2φ0

dt2

)
(26)

This equation is the same equation as (25). Therefore, we conclude that

1

r0

d

dt

(
r2
dφ0

dt

)
= 0, (27)

which means that

r2
dφ0

dt
= constant ≡ h. (28)

h is a quantity which we call angular momentum per unit mass.

We now return to the first differential equation (24). The solution to this equation can be shown
to be

r0 =
h2

µ+ Ah2 cos(φ0 + θ0)
, (29)

where A is a constant. This equation can be rewritten as

r0 =
h2/µ

1 + Ah2

µ
cos(φ0 + θ0)

≡ p

1 + e cos(φ0 + θ0)
, (30)

which is recognized as the equation of an ellipse in polar form. The quantity p = h2/µ is called
the semilatus rectum of the ellipse, while e = h2A/µ is the eccentricity of the ellipse. We can
eliminate θ0 from this equation by aligning the x0-axis of the coordinate system to be coincident
with the major axis of the ellipse, so that

r0 =
p

1 + e cosφ0

. (31)

The orbital path in this coordinate system is illustrated in Figure 4. The satellite moves in an
elliptical path about the origin. The foci of the ellipse are located at points O and F ; the Earth is
located at focal point O. This constitutes the first of Kepler’s Three Laws of Planetary Motion:
the orbit of a smaller body about a larger body is always an ellipse, with the centre of mass of
the larger body coinciding with on of the two foci of the ellipse.
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Figure 4: Orbital path of satellite in x0y0 plane

The length of the semi-major axis of the ellipse is

a =
p

1− e2
(32)

while the length of the semi-minor axis of the ellipse is

b = a(1− e2)1/2. (33)

With the Earth at point O, we can see that as the satellite traverses its orbital path, it reaches
points A and P , which are the points furthest and closest to the Earth, respectively. These points
are called apogee and perigee.

Kepler’s laws of planetary motion are:

1. The orbit of a smaller body about a larger body is always an ellipse, with the centre of mass
of the larger body coinciding with on of the two foci of the ellipse.

2. The orbit of the smaller body sweeps out equal areas in equal time. This is graphically
depicted in Figure 5, whereby the the areas A12 and A34 are equal if the time differences
t2 − t1 and t4 − t3 are the same.

3. The square of the period of revolution T of the smaller body is equal to a constant multiplied
by the 3rd power of the semi-major axis length a, i.e.

T 2 =
4π2a3

µ
(34)

Comparing this to (13), we see that if a = r, the expression derived earlier for circular orbits
applies equally to elliptical orbits.
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Figure 5: Illustration of Kepler’s second law

Prof. Sean Victor Hum Radio and Microwave Wireless Systems


